
https://bit.ly/pmt-edu-cc https://bit.ly/pmt-cc

OCR Computer Science GCSE
2.3 – Producing robust programs

Advanced Notes

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

This work by PMT Education is licensed under CC BY-NC-ND 4.0

2.3.1 Defensive design

What is Defensive Design?
Defensive design refers to designing and creating programs which are able to handle
unexpected or erroneous data and/or inputs by anticipating misuse. It is highly likely that
users will make errors or bad inputs when using a program.

Defensive design is important because it ensures:

●​ The number of bugs in a program are reduced

●​ The program behaves as expected, regardless of user input

●​ Any possible errors are accounted for

Authentication is the process of determining the identity of a user, usually through a
username and password. The authentication process verifies that a username exists, and
the password entered is correct and linked to the username.

Input Validation
Validation is the process of checking that data is appropriate for its use, so that it can be
correctly processed without any errors.

Validation Description Examples (Python)

Presence
check

Ensures that data
has been entered
and not blank.

name = input(“Enter your name”)
if name == “”:
 print(“Invalid”)

Range
check

Ensures that an
input falls within
the required
range.

num = int(input(“Enter a number less than
10”))
if num >= 10:
 print(“Too large!”)

Length
check

Ensures a
specified number
of characters
have been
entered.

password = input(“Enter a password,
minimum 8 characters.”)
if len(password) < 8:
 print(“Password too short!”)

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Maintaining Programs
It is incredibly important to maintain programs to ensure that they function as intended, are
secure, and can be improved over time.

There are many ways of maintaining programs, such as naming conventions and adding
comments.

●​ Use of sub-programs:
Sub-programs (functions and procedures) help to break down a program into
manageable chunks. By doing so, code is not repeated as the sub-programs can be
reused. Additionally, they can be easily tested and improved without having to rewrite
or adjust entire sections of code throughout the main-program.

●​ Naming conventions:
All variables, functions and procedures should be appropriately named to signify their
purpose. This makes it easier to track which variable is which, as well as what its
purpose is in the program. ← Poor naming

○​ This example has poor variable names, it can be hard to know which is which

num1 = float(input(“Enter the mass”))
num2 = float(input(“Enter the volume”))
num3 = num1 / num2
print(“The density is “, num3)

○​ This example has clear variable names, it is easy to know what each one is
mass = float(input(“Enter the mass”))
volume = float(input(“Enter the volume”))
density = mass / volume
print(“The density is “, density)

●​ Indentation:

Indentation is not only required for the syntax of most programming languages, but
also makes it easier to visualise and understand what sections code belongs to.

●​ Commenting:

Using comments is an easy way to describe what each line of code, or what each
function is responsible for, making it easy to come back later on and quickly
understand what the code does. Comments in OCR Pseudocode are written using
‘//’. The hash key, ‘#’, is used in Python.

○​ Example (pseudocode):
function addNum(num1, num2)
 sum = num1 + num2 // Adds two numbers
 print(sum) // Prints the sum
endfunction

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

2.3.2 Testing

The Purpose of Testing
All programs should be tested to ensure that they are robust, secure, and work as intended.

Testing is usually destructive, meaning that you should aim to find as many errors through
rigorous testing, rather than just showing that a program works, which it may in specific
cases, but may also contain bugs.

Testing takes place at two stages of software development:

●​ Iterative Testing:
This type of testing happens throughout development, usually testing individual
sub-programs as they are created, and then using the results from testing to make
any changes or improvements to ensure they work as intended and without bugs.

●​ Final Testing:
Testing which takes place at the end of development, which aims to test the
functionality of the entire program and check for any bugs.

○​ Alpha testing is carried out by developers in-house to fix any remaining
issues.

○​ Beta testing is performed by groups of real end-users, commonly seen in

large software releases such as in games.

Syntax and Logic Errors
Syntax errors are errors which break the grammatical rules of the programming language,
which stop the program from running.

Common syntax errors include:

●​ Missing brackets, quotation marks or colons

●​ Misspelling keywords, e.g prnt instead of print

●​ Using variables which have not been declared

●​ Incorrect indentation

Syntax errors are easy to fix as they are often identified and flagged up by an IDE or code
editor since the code won’t run.

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

Logic errors are errors in the program’s design or logic, which cause it to produce an
unexpected or incorrect output, even if the program runs or the syntax is correct.

For this reason, logic errors are often a lot harder to spot as they rely on you, as the
programmer, to identify where the program is not working as intended and is also why
testing is so important.

●​ Example (Python):
distance = float(input(“Enter the distance”))
time = float(input(“Enter the time”))
speed = time / distance

​ There is actually a logic error above! Speed should be calculated as:
speed = distance / time

Test Data

Types of Test Data:

Type Purpose Example (Range: 1–10)

Normal Typical input 5

Boundary On the edge of valid range 1 and 10

Erroneous Invalid input -1, eleven, "abc"

Normal and boundary test data should be accepted by the program, whereas erroneous data
should be rejected without causing an error.

Selecting Suitable Test Data

You should be able to:

●​ Identify appropriate test data for a given input field​

●​ Justify why it's used (e.g. “Boundary data ensures edge cases work”)

Refining Algorithms
After an algorithm has been developed and tested, it may be refined over time to improve its
functionality, or its capacity, as it may become increasingly popular. Changes may include:

●​ Fixing problems found throughout testing

●​ Adding additional functionality, or improving existing functionality

●​ Making the program more efficient by removing unnecessary components

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu

	What is Defensive Design?
	Input Validation
	Maintaining Programs
	The Purpose of Testing
	Syntax and Logic Errors
	Test Data
	Types of Test Data:

	Selecting Suitable Test Data
	Refining Algorithms

